Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

4-Methoxy-3-(trifluoromethyl)aniline

Jian-Ling He

College of Chemical and Biological Engineering, Yancheng Institute of Technology, Yinbing Road No. 9 Yancheng, Yancheng 224051, People's Republic of China Correspondence e-mail: jlheyc@163.com

Received 21 December 2011; accepted 4 January 2012

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.059 ; w R$ factor $=0.162$; data-to-parameter ratio $=14.6$.

In title compound, $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~F}_{3} \mathrm{NO}$, the methoxy group is inclined at $8.7(4)^{\circ}$ to the benzene ring plane. The crystal structure is stabilized by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{F}, \mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{F}$ hydrogen-bonding interactions.

Related literature

The title compound is an intermediate in the synthesis of trifluoromethyl-containing phthalic acid diamides, which are effective pesticides. For the preparation, see: Feng \& Li (2010). For the crystal structure of a closely related compound, see: Crampton et al. (2006).

Experimental

Crystal data

```
C}\mp@subsup{\textrm{C}}{8}{}\mp@subsup{\textrm{F}}{3}{}\textrm{NO
Mr}=191.1
Orthorhombic, Pbca
a=5.4140 (11) \AA
```

Mo $K \alpha$ radiation
$\mu=0.14 \mathrm{~mm}^{-1}$
Data collection
Enraf-Nonius CAD-4 diffractometer
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.986, T_{\text {max }}=0.986$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.059 \quad 118$ parameters
$w R\left(F^{2}\right)=0.162$
$S=1.13$
1722 reflections
$T=293 \mathrm{~K}$
$0.10 \times 0.10 \times 0.10 \mathrm{~mm}$

1722 measured reflections 1722 independent reflections 1389 reflections with $I>2 \sigma(I)$

Table 1
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 C \cdots \mathrm{~F}^{2}$	0.96	2.52	$3.292(3)$	138
$\mathrm{~N}-\mathrm{H} 0 A \cdots 1^{\text {ii }}$	0.86	2.44	$3.242(2)$	155
$\mathrm{~N}-\mathrm{H} 0 B \cdots \mathrm{~N}^{\text {iii }}$	0.86	2.47	$3.245(3)$	150
Symmetry codes: (i) $x+1, y, z ;$ (ii) $-x+\frac{1}{2}, y-\frac{1}{2}, z ;$ (iii) $x-\frac{1}{2}, y,-z+\frac{1}{2}$				

Data collection: CAD-4 Software (Enraf-Nonius, 1985); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The author thanks the Center of Testing and Analysis, Nanjing University, for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2499).

References

Crampton, M. R., Emokpae, T. A., Isanbor, C., Batsanov, A. S., Howard, J. A. K. \& Mondal, R. (2006). Eur. J. Org. Chem. pp. 1222-1230.

Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.
Feng, M. L. \& Li, Y. F. (2010). J. Agric. Food Chem. 58, 10999-11006.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

4-Methoxy-3-(trifluoromethyl)aniline

J.-L. He

Comment

The tittle compound (Fig. 1) is used as an important intermediate in the synthesis of trifluoromethyl-containing phthalic acid compounds which are recognized as effective pesticides (Feng \& Li, 2010). In the title molecule, the N, O and C8 atoms bonded to the central benzene ring ($\mathrm{C} 2-\mathrm{C} 7$) lie in its plane with methoxy group $(\mathrm{O} / \mathrm{C} 1)$ oriented at $8.7(4)^{\circ}$ with respect to the benzene ring plane. There is an intramolecular interaction $\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A} \cdots \mathrm{~F} 3$ which stabilizes the molecular structure of the title compound. The crystal structure is stabilized by $\mathrm{N}-\mathrm{H} 0 \mathrm{~A} \cdots \mathrm{~F} 1, \mathrm{~N}-\mathrm{H} 0 \mathrm{~B} \cdots \mathrm{~N}$ and $\mathrm{C} 1-\mathrm{H} 1 \mathrm{C} \cdots \mathrm{F} 2$ intermolecular hydrogen bonding interactions. The bond distances and bond angles in the title compound agree with the corresponding bond distances and bond angles reported in a closely related compound (Crampton et al., 2006).

Experimental

The title compound was prepared by a method reported in the literature (Feng \& Li, 2010)). A solution of 4-amino-2(trifluoromethyl)phenol ($2 \mathrm{~g}, 11.3 \mathrm{mmol}$) in dichloromethane $(20 \mathrm{ml})$ was added slowly to a solution of sodium hydride (0.33 $\mathrm{g}, 13.6 \mathrm{nmol})$ in an ice bath. After stirring for 6 h iodomethane $(4.8 \mathrm{~g}, 33.9 \mathrm{mmol})$ was added slowly in 1 h . After stirring for 48 h at room tempeature, the solvent was evaporated on a rotary evaporator yielding the title compound. Colorless blocks of the title compound were grown in ethanol $(20 \mathrm{ml})$ by slow evaporation of the solvent at room temperature in about 7 days.

Refinement

The H atoms were positioned geometrically and constrained to ride on their parent atoms, with $\mathrm{N}-\mathrm{H}=0.86 \AA$ and $\mathrm{C}-\mathrm{H}=$ 0.93 and $0.96 \AA$ for aryl and alky H -atoms, respectively, with $U_{\text {iso }}(\mathrm{H})=x U_{\text {eq }}(\mathrm{C} / \mathrm{N})$, where $x=1.2$ for aromatic and amino H , and $x=1.5$ for aryl H atoms.

Figures

Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. A packing diagram of the title compound showing hydrogen bonds dashed lines.

supplementary materials

4-Methoxy-3-(trifluoromethyl)aniline

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~F}_{3} \mathrm{NO}$
$M_{r}=191.15$
Orthorhombic, $P b c a$
Hall symbol: -P 2ac 2ab
$a=5.4140$ (11) \AA
$b=14.880$ (3) \AA
$c=21.304(4) \AA$
$V=1716.3(6) \AA^{3}$
$Z=8$

Data collection

Enraf-Nonius CAD-4
diffractometer
Radiation source: fine-focus sealed tube graphite

Detector resolution: 28.5714 pixels mm^{-1}
$\omega / 2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.986, T_{\text {max }}=0.986$
1722 independent reflections
1389 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.000$
$\theta_{\text {max }}=26.4^{\circ}, \theta_{\text {min }}=3.3^{\circ}$
$h=0 \rightarrow 6$
$k=0 \rightarrow 18$

1722 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.059$
$w R\left(F^{2}\right)=0.162$
$S=1.13$

1722 reflections
118 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.074 P)^{2}+0.3348 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.20 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.19$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations
between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
N	$0.0910(3)$	$0.09833(11)$	$0.20799(9)$	$0.0642(5)$
H0A	0.1826	0.0524	0.2003	0.077^{*}
H0B	0.0020	0.0998	0.2414	0.077^{*}
F3	$-0.3126(4)$	$0.39455(11)$	$0.21116(7)$	$0.1021(6)$
F2	$-0.3656(3)$	$0.42452(10)$	$0.11387(8)$	$0.0906(5)$
C7	$-0.0486(4)$	$0.32133(13)$	$0.13969(9)$	$0.0548(5)$
F1	$-0.0537(3)$	$0.47609(9)$	$0.16277(8)$	$0.0924(6)$
O	$0.0805(4)$	$0.39518(12)$	$0.04733(8)$	$0.0872(6)$
C6	$-0.0515(4)$	$0.24725(13)$	$0.17919(10)$	$0.0550(5)$
H6A	-0.1479	0.2487	0.2153	0.066^{*}
C5	$0.0868(4)$	$0.17085(13)$	$0.16592(9)$	$0.0557(5)$
C8	$-0.1937(4)$	$0.40274(15)$	$0.15659(10)$	$0.0643(6)$
C2	$0.0907(4)$	$0.32022(15)$	$0.08453(10)$	$0.0653(6)$
C4	$0.2268(5)$	$0.17158(16)$	$0.11146(11)$	$0.0719(7)$
H4A	0.3216	0.1214	0.1016	0.086^{*}
C3	$0.2297(5)$	$0.24452(18)$	$0.07140(11)$	$0.0767(7)$
H3A	0.3260	0.2427	0.0353	0.092^{*}
C1	$0.2463(6)$	$0.4017(2)$	$-0.00398(11)$	$0.0865(8)$
H1A	0.2177	0.4570	-0.0260	0.130^{*}
H1B	0.2203	0.3520	-0.0319	0.130^{*}
H1C	0.4131	0.4005	0.0113	0.130^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N	$0.0752(12)$	$0.0474(10)$	$0.0699(11)$	$0.0025(8)$	$0.0031(9)$	$0.0081(8)$
F3	$0.1383(15)$	$0.0767(10)$	$0.0912(11)$	$0.0339(10)$	$0.0413(10)$	$0.0151(8)$
F2	$0.0887(10)$	$0.0811(11)$	$0.1018(11)$	$0.0177(8)$	$-0.0227(9)$	$0.0065(8)$
C7	$0.0605(11)$	$0.0477(11)$	$0.0562(11)$	$-0.0037(9)$	$-0.0035(10)$	$0.0018(8)$
F1	$0.1106(12)$	$0.0541(8)$	$0.1124(12)$	$-0.0104(8)$	$-0.0073(9)$	$-0.0123(7)$
O	$0.1094(14)$	$0.0758(11)$	$0.0763(11)$	$0.0142(10)$	$0.0150(10)$	$0.0304(9)$
C6	$0.0620(12)$	$0.0492(11)$	$0.0539(11)$	$-0.0033(9)$	$0.0009(10)$	$0.0014(8)$
C5	$0.0625(12)$	$0.0482(11)$	$0.0563(11)$	$-0.0046(9)$	$-0.0058(10)$	$0.0021(8)$
C8	$0.0757(15)$	$0.0539(12)$	$0.0632(12)$	$0.0042(10)$	$0.0003(11)$	$0.0069(10)$
C2	$0.0782(14)$	$0.0604(13)$	$0.0572(12)$	$0.0005(11)$	$0.0006(11)$	$0.0119(10)$
C4	$0.0852(16)$	$0.0629(14)$	$0.0674(13)$	$0.0141(12)$	$0.0126(13)$	$0.0032(10)$
C3	$0.0922(17)$	$0.0765(16)$	$0.0614(13)$	$0.0136(13)$	$0.0179(13)$	$0.0116(11)$

$\begin{array}{lllllll}\mathrm{C} 1 & 0.0955(18) & 0.0942(19) & 0.0697(15) & -0.0139(15) & 0.0077(15) & 0.0258(14)\end{array}$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{N}-\mathrm{C} 5$	$1.403(3)$
$\mathrm{N}-\mathrm{H} 0 \mathrm{~A}$	0.8600
$\mathrm{~N}-\mathrm{H} 0 \mathrm{~B}$	0.8600
$\mathrm{~F} 3-\mathrm{C} 8$	$1.335(3)$
$\mathrm{F} 2-\mathrm{C} 8$	$1.342(3)$
$\mathrm{C} 7-\mathrm{C} 6$	$1.387(3)$
$\mathrm{C} 7-\mathrm{C} 2$	$1.396(3)$
$\mathrm{C} 7-\mathrm{C} 8$	$1.488(3)$
$\mathrm{F} 1-\mathrm{C} 8$	$1.335(3)$
$\mathrm{O}-\mathrm{C} 2$	$1.369(3)$
$\mathrm{O}-\mathrm{C} 1$	$1.418(3)$
$\mathrm{C} 5-\mathrm{N}-\mathrm{H} 0 \mathrm{~A}$	120.0
$\mathrm{C} 5-\mathrm{N}-\mathrm{H} 0 \mathrm{~B}$	120.0
$\mathrm{H} 0 \mathrm{~A}-\mathrm{N}-\mathrm{H} 0 \mathrm{~B}$	120.0
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 2$	$120.48(19)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$119.62(19)$
$\mathrm{C} 2-\mathrm{C} 7-\mathrm{C} 8$	$119.89(18)$
$\mathrm{C} 2-\mathrm{O}-\mathrm{C} 1$	$118.4(2)$
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 5$	$121.37(19)$
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	119.3
C5-C6-H6A	119.3
C4-C5-C6	$117.27(18)$
C4-C5-N	$122.13(19)$
C6-C5-N	$120.53(19)$
F3-C8-F1	$105.23(19)$
F3-C8-F2	$106.14(19)$
F1-C8-F2	$105.25(18)$
F3-C8-C7	$113.03(18)$

C6-C5	$1.390(3)$
C6-H6A	0.9300
C5-C4	$1.386(3)$
C2-C3	$1.383(3)$
C4-C3	$1.381(3)$
C4-H4A	0.9300
C3-H3A	0.9300
C1-H1A	0.9600
C1-H1B	0.9600
C1-H1C	0.9600
F1-C8-C7	$112.9(2)$
F2-C8-C7	$113.50(19)$
O-C2-C3	$124.6(2)$
O-C2-C7	$117.1(2)$
C3-C2-C7	$118.27(19)$
C3-C4-C5	$122.0(2)$
C3-C4-H4A	119.0
C5-C4-H4A	119.0
C4-C3-C2	$120.6(2)$
C4-C3-H3A	119.7
C2-C3-H3A	119.7
O-C1-H1A	109.5
O-C1-H1B	109.5
H1A-C1-H1B	109.5
O-C1-H1C	109.5
H1A-C1-H1C	109.5
H1B-C1-H1C	109.5

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1 — \mathrm{H} 1 \mathrm{C} \cdots \mathrm{F}^{\mathrm{i}}$	0.96	2.52	$3.292(3)$	138
$\mathrm{C} 6 — \mathrm{H} 6 \mathrm{~A} \cdots \mathrm{~F} 3$	0.93	2.35	$2.696(3)$	102
$\mathrm{~N} — \mathrm{H} 0 \mathrm{~A} \cdots \mathrm{~F} 1^{\mathrm{ii}}$	0.86	2.44	$3.242(2)$	155
$\mathrm{~N} — \mathrm{H} 0 \mathrm{~B} \cdots \mathrm{~N}^{\mathrm{iii}}$	0.86	2.47	$3.245(3)$	150

Symmetry codes: (i) $x+1, y, z$; (ii) $-x+1 / 2, y-1 / 2, z$; (iii) $x-1 / 2, y,-z+1 / 2$.

Fig. 1

Fig. 2

